Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38559127

RESUMO

Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.

2.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537634

RESUMO

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Assuntos
Genoma , Genômica , Ratos , Animais , Genoma/genética , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma , Variação Genética/genética
3.
BioData Min ; 17(1): 7, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419006

RESUMO

PURPOSE: Epistasis, the interaction between two or more genes, is integral to the study of genetics and is present throughout nature. Yet, it is seldom fully explored as most approaches primarily focus on single-locus effects, partly because analyzing all pairwise and higher-order interactions requires significant computational resources. Furthermore, existing methods for epistasis detection only consider a Cartesian (multiplicative) model for interaction terms. This is likely limiting as epistatic interactions can evolve to produce varied relationships between genetic loci, some complex and not linearly separable. METHODS: We present new algorithms for the interaction coefficients for standard regression models for epistasis that permit many varied models for the interaction terms for loci and efficient memory usage. The algorithms are given for two-way and three-way epistasis and may be generalized to higher order epistasis. Statistical tests for the interaction coefficients are also provided. We also present an efficient matrix based algorithm for permutation testing for two-way epistasis. We offer a proof and experimental evidence that methods that look for epistasis only at loci that have main effects may not be justified. Given the computational efficiency of the algorithm, we applied the method to a rat data set and mouse data set, with at least 10,000 loci and 1,000 samples each, using the standard Cartesian model and the XOR model to explore body mass index. RESULTS: This study reveals that although many of the loci found to exhibit significant statistical epistasis overlap between models in rats, the pairs are mostly distinct. Further, the XOR model found greater evidence for statistical epistasis in many more pairs of loci in both data sets with almost all significant epistasis in mice identified using XOR. In the rat data set, loci involved in epistasis under the XOR model are enriched for biologically relevant pathways. CONCLUSION: Our results in both species show that many biologically relevant epistatic relationships would have been undetected if only one interaction model was applied, providing evidence that varied interaction models should be implemented to explore epistatic interactions that occur in living systems.

4.
Sci Rep ; 14(1): 4182, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378969

RESUMO

Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.


Assuntos
Cocaína , Humanos , Ratos , Animais , Masculino , Cocaína/farmacologia , Isolamento Social , Comportamento Animal/fisiologia , Abrigo para Animais
5.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076923

RESUMO

Genome-wide association studies typically evaluate the autosomes and sometimes the X Chromosome, but seldom consider the Y or mitochondrial Chromosomes. We genotyped the Y and mitochondrial chromosomes in heterogeneous stock rats (Rattus norvegicus), which were created in 1984 by intercrossing eight inbred strains and have subsequently been maintained as an outbred population for 100 generations. As the Y and mitochondrial Chromosomes do not recombine, we determined which founder had contributed these chromosomes for each rat, and then performed association analysis for all complex traits (n=12,055; intersection of 12,116 phenotyped and 15,042 haplotyped rats). We found the eight founders had 8 distinct Y and 4 distinct mitochondrial Chromosomes, however only two of each were observed in our modern heterogeneous stock rat population (Generations 81-97). Despite the unusually large sample size, the p-value distribution did not deviate from expectations; there were no significant associations for behavioral, physiological, metabolome, or microbiome traits after correcting for multiple comparisons. However, both Y and mitochondrial Chromosomes were strongly associated with expression of a few genes located on those chromosomes, which provided a positive control. Our results suggest that within modern heterogeneous stock rats there are no Y and mitochondrial Chromosomes differences that strongly influence behavioral or physiological traits. These results do not address other ancestral Y and mitochondrial Chromosomes that do not appear in modern heterogeneous stock rats, nor do they address effects that may exist in other rat populations, or in other species.

7.
Nat Neurosci ; 26(11): 1868-1879, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798411

RESUMO

The amygdala processes positive and negative valence and contributes to addiction, but the cell-type-specific gene regulatory programs involved are unknown. We generated an atlas of single-nucleus gene expression and chromatin accessibility in the amygdala of outbred rats with high and low cocaine addiction-like behaviors following prolonged abstinence. Differentially expressed genes between the high and low groups were enriched for energy metabolism across cell types. Rats with high addiction index (AI) showed increased relapse-like behaviors and GABAergic transmission in the amygdala. Both phenotypes were reversed by pharmacological inhibition of the glyoxalase 1 enzyme, which metabolizes methylglyoxal-a GABAA receptor agonist produced by glycolysis. Differences in chromatin accessibility between high and low AI rats implicated pioneer transcription factors in the basic helix-loop-helix, FOX, SOX and activator protein 1 families. We observed opposite regulation of chromatin accessibility across many cell types. Most notably, excitatory neurons had greater accessibility in high AI rats and inhibitory neurons had greater accessibility in low AI rats.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Humanos , Ratos , Animais , Tonsila do Cerebelo/fisiologia , Neurônios , Cromatina/metabolismo , Cocaína/farmacologia
8.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732200

RESUMO

Behavioral diversity is critical for population fitness. Individual differences in risk-taking are observed across species, but underlying genetic mechanisms and conservation are largely unknown. We examined dark avoidance in larval zebrafish, a motivated behavior reflecting an approach-avoidance conflict. Brain-wide calcium imaging revealed significant neural activity differences between approach-inclined versus avoidance-inclined individuals. We used a population of ∼6,000 to perform the first genome-wide association study (GWAS) in zebrafish, which identified 34 genomic regions harboring many genes that are involved in synaptic transmission and human psychiatric diseases. We used CRISPR to study several causal genes: serotonin receptor-1b ( htr1b ), nitric oxide synthase-1 ( nos1 ), and stress-induced phosphoprotein-1 ( stip1 ). We further identified 52 conserved elements containing 66 GWAS significant variants. One encoded an exonic regulatory element that influenced tissue-specific nos1 expression. Together, these findings reveal new genetic loci and establish a powerful, scalable animal system to probe mechanisms underlying motivation, a critical dimension of psychiatric diseases.

9.
Cell Rep ; 42(8): 112873, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527041

RESUMO

A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.


Assuntos
Índice de Massa Corporal , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Humanos , Animais , Ratos , Tamanho Corporal , Camundongos , Especificidade da Espécie
10.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37214860

RESUMO

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.

11.
BioData Min ; 16(1): 14, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038201

RESUMO

BACKGROUND: Quantitative Trait Locus (QTL) analysis and Genome-Wide Association Studies (GWAS) have the power to identify variants that capture significant levels of phenotypic variance in complex traits. However, effort and time are required to select the best methods and optimize parameters and pre-processing steps. Although machine learning approaches have been shown to greatly assist in optimization and data processing, applying them to QTL analysis and GWAS is challenging due to the complexity of large, heterogenous datasets. Here, we describe proof-of-concept for an automated machine learning approach, AutoQTL, with the ability to automate many complicated decisions related to analysis of complex traits and generate solutions to describe relationships that exist in genetic data. RESULTS: Using a publicly available dataset of 18 putative QTL from a large-scale GWAS of body mass index in the laboratory rat, Rattus norvegicus, AutoQTL captures the phenotypic variance explained under a standard additive model. AutoQTL also detects evidence of non-additive effects including deviations from additivity and 2-way epistatic interactions in simulated data via multiple optimal solutions. Additionally, feature importance metrics provide different insights into the inheritance models and predictive power of multiple GWAS-derived putative QTL. CONCLUSIONS: This proof-of-concept illustrates that automated machine learning techniques can complement standard approaches and have the potential to detect both additive and non-additive effects via various optimal solutions and feature importance metrics. In the future, we aim to expand AutoQTL to accommodate omics-level datasets with intelligent feature selection and feature engineering strategies.

12.
Genetics ; 224(2)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-36974931

RESUMO

Power analyses are often used to determine the number of animals required for a genome-wide association study (GWAS). These analyses are typically intended to estimate the sample size needed for at least 1 locus to exceed a genome-wide significance threshold. A related question that is less commonly considered is the number of significant loci that will be discovered with a given sample size. We used simulations based on a real data set that consisted of 3,173 male and female adult N/NIH heterogeneous stock rats to explore the relationship between sample size and the number of significant loci discovered. Our simulations examined the number of loci identified in subsamples of the full data set. The subsampling analysis was conducted for 4 traits with low (0.15 ± 0.03), medium (0.31 ± 0.03 and 0.36 ± 0.03), and high (0.46 ± 0.03) SNP-based heritabilities. For each trait, we subsampled the data 100 times at different sample sizes (500, 1,000, 1,500, 2,000, and 2,500). We observed an exponential increase in the number of significant loci with larger sample sizes. Our results are consistent with similar observations in human GWAS and imply that future rodent GWAS should use sample sizes that are significantly larger than those needed to obtain a single significant result.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Masculino , Feminino , Humanos , Animais , Ratos , Estudo de Associação Genômica Ampla/métodos , Tamanho da Amostra , Polimorfismo de Nucleotídeo Único , Fenótipo
13.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168347

RESUMO

Delay discounting refers to the behavioral tendency to devalue rewards as a function of their delay in receipt. Heightened delay discounting has been associated with substance use disorders, as well as multiple co-occurring psychopathologies. Genetic studies in humans and animal models have established that delay discounting is a heritable trait, but only a few specific genes have been associated with delay discounting. Here, we aimed to identify novel genetic loci associated with delay discounting through a genome-wide association study (GWAS) using Heterogenous Stock rats, a genetically diverse outbred population derived from eight inbred founder strains. We assessed delay discounting in 650 male and female rats using an adjusting amount procedure in which rats chose between smaller immediate sucrose rewards or a larger reward at variable delays. Preference switch points were calculated for each rat and both exponential and hyperbolic functions were fitted to these indifference points. Area under the curve (AUC) and the discounting parameter k of both functions were used as delay discounting measures. GWAS for AUC, exponential k, and indifference points for a short delay identified significant loci on chromosomes 20 and 14. The gene Slc35f1, which encodes a member of the solute carrier family of nucleoside sugar transporters, was the only gene within the chromosome 20 locus. That locus also contained an eQTL for Slc35f1, suggesting that heritable differences in the expression of that gene might be responsible for the association with behavior. The gene Adgrl3, which encodes a member of the latrophilin family of G-protein coupled receptors, was the only gene within the chromosome 14 locus. These findings implicate novel genes in delay discounting and highlight the need for further exploration.

14.
Nucleic Acids Res ; 50(19): 10882-10895, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36263809

RESUMO

Heterogeneous Stock (HS) rats are a genetically diverse outbred rat population that is widely used for studying genetics of behavioral and physiological traits. Mapping Quantitative Trait Loci (QTL) associated with transcriptional changes would help to identify mechanisms underlying these traits. We generated genotype and transcriptome data for five brain regions from 88 HS rats. We identified 21 392 cis-QTLs associated with expression and splicing changes across all five brain regions and validated their effects using allele specific expression data. We identified 80 cases where eQTLs were colocalized with genome-wide association study (GWAS) results from nine physiological traits. Comparing our dataset to human data from the Genotype-Tissue Expression (GTEx) project, we found that the HS rat data yields twice as many significant eQTLs as a similarly sized human dataset. We also identified a modest but highly significant correlation between genetic regulatory variation among orthologous genes. Surprisingly, we found less genetic variation in gene regulation in HS rats relative to humans, though we still found eQTLs for the orthologs of many human genes for which eQTLs had not been found. These data are available from the RatGTEx data portal (RatGTEx.org) and will enable new discoveries of the genetic influences of complex traits.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Animais , Ratos , Humanos , Locos de Características Quantitativas/genética , Transcriptoma , Genótipo , Encéfalo , Polimorfismo de Nucleotídeo Único
15.
PLoS Genet ; 18(5): e1010234, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639796

RESUMO

Sprague Dawley (SD) rats are among the most widely used outbred laboratory rat populations. Despite this, the genetic characteristics of SD rats have not been clearly described, and SD rats are rarely used for experiments aimed at exploring genotype-phenotype relationships. In order to use SD rats to perform a genome-wide association study (GWAS), we collected behavioral data from 4,625 SD rats that were predominantly obtained from two commercial vendors, Charles River Laboratories and Harlan Sprague Dawley Inc. Using double-digest genotyping-by-sequencing (ddGBS), we obtained dense, high-quality genotypes at 291,438 SNPs across 4,061 rats. This genetic data allowed us to characterize the variation present in Charles River vs. Harlan SD rats. We found that the two populations are highly diverged (FST > 0.4). Furthermore, even for rats obtained from the same vendor, there was strong population structure across breeding facilities and even between rooms at the same facility. We performed multiple separate GWAS by fitting a linear mixed model that accounted for population structure and using meta-analysis to jointly analyze all cohorts. Our study examined Pavlovian conditioned approach (PavCA) behavior, which assesses the propensity for rats to attribute incentive salience to reward-associated cues. We identified 46 significant associations for the various metrics used to define PavCA. The surprising degree of population structure among SD rats from different sources has important implications for their use in both genetic and non-genetic studies.


Assuntos
Estudo de Associação Genômica Ampla , Recompensa , Animais , Condicionamento Clássico , Motivação , Ratos , Ratos Sprague-Dawley
16.
Front Psychiatry ; 13: 790566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237186

RESUMO

Many personality traits are influenced by genetic factors. Rodents models provide an efficient system for analyzing genetic contribution to these traits. Using 1,246 adolescent heterogeneous stock (HS) male and female rats, we conducted a genome-wide association study (GWAS) of behaviors measured in an open field, including locomotion, novel object interaction, and social interaction. We identified 30 genome-wide significant quantitative trait loci (QTL). Using multiple criteria, including the presence of high impact genomic variants and co-localization of cis-eQTL, we identified 17 candidate genes (Adarb2, Ankrd26, Cacna1c, Cacng4, Clock, Ctu2, Cyp26b1, Dnah9, Gda, Grxcr1, Eva1a, Fam114a1, Kcnj9, Mlf2, Rab27b, Sec11a, and Ube2h) for these traits. Many of these genes have been implicated by human GWAS of various psychiatric or drug abuse related traits. In addition, there are other candidate genes that likely represent novel findings that can be the catalyst for future molecular and genetic insights into human psychiatric diseases. Together, these findings provide strong support for the use of the HS population to study psychiatric disorders.

17.
Front Genet ; 13: 1029058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36793389

RESUMO

Elevated intraocular pressure (IOP) is influenced by environmental and genetic factors. Increased IOP is a major risk factor for most types of glaucoma, including primary open angle glaucoma (POAG). Investigating the genetic basis of IOP may lead to a better understanding of the molecular mechanisms of POAG. The goal of this study was to identify genetic loci involved in regulating IOP using outbred heterogeneous stock (HS) rats. HS rats are a multigenerational outbred population derived from eight inbred strains that have been fully sequenced. This population is ideal for a genome-wide association study (GWAS) owing to the accumulated recombinations among well-defined haplotypes, the relatively high allele frequencies, the accessibility to a large collection of tissue samples, and the large allelic effect size compared to human studies. Both male and female HS rats (N = 1,812) were used in the study. Genotyping-by-sequencing was used to obtain ∼3.5 million single nucleotide polymorphisms (SNP) from each individual. SNP heritability for IOP in HS rats was 0.32, which agrees with other studies. We performed a GWAS for the IOP phenotype using a linear mixed model and used permutation to determine a genome-wide significance threshold. We identified three genome-wide significant loci for IOP on chromosomes 1, 5, and 16. Next, we sequenced the mRNA of 51 whole eye samples to find cis-eQTLs to aid in identification of candidate genes. We report 5 candidate genes within those loci: Tyr, Ctsc, Plekhf2, Ndufaf6 and Angpt2. Tyr, Ndufaf6 and Angpt2 genes have been previously implicated by human GWAS of IOP-related conditions. Ctsc and Plekhf2 genes represent novel findings that may provide new insight into the molecular basis of IOP. This study highlights the efficacy of HS rats for investigating the genetics of elevated IOP and identifying potential candidate genes for future functional testing.

18.
Front Genet ; 13: 1003074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712851

RESUMO

Common genetic factors likely contribute to multiple psychiatric diseases including mood and substance use disorders. Certain stable, heritable traits reflecting temperament, termed externalizing or internalizing, play a large role in modulating vulnerability to these disorders. To model these heritable tendencies, we selectively bred rats for high and low exploration in a novel environment [bred High Responders (bHR) vs. Low Responders (bLR)]. To identify genes underlying the response to selection, we phenotyped and genotyped 538 rats from an F2 cross between bHR and bLR. Several behavioral traits show high heritability, including the selection trait: exploratory locomotion (EL) in a novel environment. There were significant phenotypic and genetic correlations between tests that capture facets of EL and anxiety. There were also correlations with Pavlovian conditioned approach (PavCA) behavior despite the lower heritability of that trait. Ten significant and conditionally independent loci for six behavioral traits were identified. Five of the six traits reflect different facets of EL that were captured by three behavioral tests. Distance traveled measures from the open field and the elevated plus maze map onto different loci, thus may represent different aspects of novelty-induced locomotor activity. The sixth behavioral trait, number of fecal boli, is the only anxiety-related trait mapping to a significant locus on chromosome 18 within which the Pik3c3 gene is located. There were no significant loci for PavCA. We identified a missense variant in the Plekhf1 gene on the chromosome 1:95 Mb QTL and Fancf and Gas2 as potential candidate genes that may drive the chromosome 1:107 Mb QTL for EL traits. The identification of a locomotor activity-related QTL on chromosome 7 encompassing the Pkhd1l1 and Trhr genes is consistent with our previous finding of these genes being differentially expressed in the hippocampus of bHR vs. bLR rats. The strong heritability coupled with identification of several loci associated with exploratory locomotion and emotionality provide compelling support for this selectively bred rat model in discovering relatively large effect causal variants tied to elements of internalizing and externalizing behaviors inherent to psychiatric and substance use disorders.

19.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33875455

RESUMO

The rat oxycodone and cocaine biobanks contain samples that vary by genotypes (by using genetically diverse genotyped HS rats), phenotypes (by measuring addiction-like behaviors in an advanced SA model), timepoints (samples are collected longitudinally before, during, and after SA, and terminally at three different timepoints in the addiction cycle: intoxication, withdrawal, and abstinence or without exposure to drugs through age-matched naive rats), samples collected (organs, cells, biofluids, feces), preservation (paraformaldehyde-fixed, snap-frozen, or cryopreserved) and application (proteomics, transcriptomics, microbiomics, metabolomics, epigenetics, anatomy, circuitry analysis, biomarker discovery, etc.Substance use disorders (SUDs) are pervasive in our society and have substantial personal and socioeconomical costs. A critical hurdle in identifying biomarkers and novel targets for medication development is the lack of resources for obtaining biological samples with a detailed behavioral characterization of SUD. Moreover, it is nearly impossible to find longitudinal samples. As part of two ongoing large-scale behavioral genetic studies in heterogeneous stock (HS) rats, we have created two preclinical biobanks using well-validated long access (LgA) models of intravenous cocaine and oxycodone self-administration (SA) and comprehensive characterization of addiction-related behaviors. The genetic diversity in HS rats mimics diversity in the human population and includes individuals that are vulnerable or resilient to compulsive-like responding for cocaine or oxycodone. Longitudinal samples are collected throughout the experiment, before exposure to the drug, during intoxication, acute withdrawal, and protracted abstinence, and include naive, age-matched controls. Samples include, but are not limited to, blood plasma, feces and urine, whole brains, brain slices and punches, kidney, liver, spleen, ovary, testis, and adrenal glands. Three preservation methods (fixed in formaldehyde, snap-frozen, or cryopreserved) are used to facilitate diverse downstream applications such as proteomics, metabolomics, transcriptomics, epigenomics, microbiomics, neuroanatomy, biomarker discovery, and other cellular and molecular approaches. To date, >20,000 samples have been collected from over 1000 unique animals and made available free of charge to non-profit institutions through https://www.cocainebiobank.org/ and https://www.oxycodonebiobank.org/.


Assuntos
Comportamento Aditivo , Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Bancos de Espécimes Biológicos , Oxicodona/uso terapêutico , Ratos , Ratos Sprague-Dawley , Autoadministração
20.
Sci Rep ; 11(1): 2223, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500444

RESUMO

Sensitivity to cocaine and its associated stimuli ("cues") are important factors in the development and maintenance of addiction. Rodent studies suggest that this sensitivity is related, in part, to the propensity to attribute incentive salience to food cues, which, in turn, contributes to the maintenance of cocaine self-administration, and cue-induced relapse of drug-seeking. Whereas each of these traits has established links to drug use, the relatedness between the individual traits themselves has not been well characterized in preclinical models. To this end, the propensity to attribute incentive salience to a food cue was first assessed in two distinct cohorts of 2716 outbred heterogeneous stock rats (HS; formerly N:NIH). We then determined whether each cohort was associated with performance in one of two paradigms (cocaine conditioned cue preference and cocaine contextual conditioning). These measure the unconditioned locomotor effects of cocaine, as well as conditioned approach and the locomotor response to a cocaine-paired floor or context. There was large individual variability and sex differences among all traits, but they were largely independent of one another in both males and females. These findings suggest that these traits may contribute to drug-use via independent underlying neuropsychological processes.


Assuntos
Cocaína , Condicionamento Clássico/fisiologia , Alimentos , Animais , Comportamento Animal/fisiologia , Sinais (Psicologia) , Feminino , Locomoção/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...